213 research outputs found

    Swine-Derived Probiotic Lactobacillus plantarum Inhibits Growth and Adhesion of Enterotoxigenic Escherichia coli and Mediates Host Defense

    Get PDF
    Weaning stress renders piglets susceptible to pathogen infection, which leads to post-weaning diarrhea, a severe condition characterized by heavy diarrhea and mortality in piglets. Enterotoxigenic Escherichia coli (ETEC) is one of typical strains associated with post-weaning diarrhea. Thus, prevention and inhibition of ETEC infection are of great concern. Probiotics possess anti-pathogenic activity and can counteract ETEC infection; however, their underlying mechanisms and modes of action have not yet been clarified. In the present study, the direct and indirect protective effects of Lactobacillus plantarum ZLP001 against ETEC infection were investigated by different methods. We found that bacterial culture and culture supernatant of L. plantarum ZLP001 prevented ETEC growth by the Oxford cup method, and ETEC growth inhibition was observed in a co-culture assay as well. This effect was suggested to be caused mainly by antimicrobial metabolites produced by L. plantarum ZLP001. In addition, adhesion capacity of L. plantarum ZLP001 to IPEC-J2 cells were observed using microscopy and counting. L. plantarum ZLP001 also exhibited a concentration-dependent ability to inhibit ETEC adhesion to IPEC-J2 cells, which mainly occurred via exclusion and competition mode. Furthermore, quantitative real time polymerase chain reaction (qPCR) analysis showed that L. plantarum ZLP001 upregulated the expression of host defense peptides (HDPs) but did not trigger an inflammatory response. In addition, L. plantarum ZLP001 induced HDP secretion, which enhanced the potential antimicrobial activity of IPEC-J2 cell-culture supernatant after incubation with L. plantarum ZLP001. Our findings demonstrate that L. plantarum ZLP001, an intestinal Lactobacillus species associated with piglet health, possesses anti-ETEC activity. L. plantarum ZLP001 might prevent ETEC growth, inhibit ETEC adhesion to the intestinal mucosa, and activate the innate immune response to secret antimicrobial peptides. L. plantarum ZLP001 is worth investigation as a potential probiotics

    Fecal Microbiota and Its Correlation With Fatty Acids and Free Amino Acids Metabolism in Piglets After a Lactobacillus Strain Oral Administration

    Get PDF
    Lactobacillus has a positive effect on the host intestinal microbiota. In piglets, dietary supplementation with Lactobacillus affects general health and plays an important role in nutrient digestion and fermentation. However, this association requires further investigation. Here, we studied newborn piglets from 12 litters. The nursed piglets were given a creep feed beginning on day 10 post-partum and weaned at day 30. Piglets were fed either a control basic diet or a diet including supplementation with Lactobacillus reuteri ZLR003 at 6.0 × 106 CFU/g feed. At day 30 and 60, feces samples were taken and used for sequencing of the V3-V4 hypervariable region of the 16S rRNA gene. At day 60, feces samples and serum samples were also taken and used to measure the short chain fatty acids (SCFAs) and to detect long chain fatty acids (LCFAs) and free amino acids (FAAs), respectively. The results revealed that L. reuteri ZLR003 could improve piglet fecal microbiota composition, especially at the end of weaned period. The concentrations of lactic acid and butyric acid in feces were higher, and acetic acid concentration was lower in the L. reuteri ZLR003 group compared with the control group (P < 0.05). The serum polyunsaturated fatty acids C18:2n6c, C18:3n3, C20:4n6, and C22:6n3 were significantly higher (P < 0.05), as were the serum FAAs Gly, Ala, Val, Iso, Asn, Asp, Glu, Met, Phe, and Leu (P < 0.05), in the L. reuteri group compared with the control group. A correlation analysis revealed that the genera Ruminococcaceae_UCG-010 and Ruminococcaceae_UCG-014 had a negative correlation with the SCFAs content in feces, the genus Prevotella_9 had a higher positive correlation with C18:2n6c, and the genera Megasphaera and Mitsuokella had a more positive significant effect on the serum FAAs content in weaned piglets in the L. reuteri ZLR003 group compared with the control group. In conclusion, L. reuteri ZLR003 influenced the fecal microbiota composition of piglets, and its effects were related to the metabolism of SCFAs, LCFAs, and FAAs. Our findings will help facilitate the application of Lactobacillus strains in pig production

    Perspective on ultramicroporous carbon as sulphur host for Li–S batteries

    Get PDF
    Lithium-sulphur (Li-S) batteries are currently considered as next-generation battery technology. Sulphur is an attractive positive electrode for lithium metal batteries, mainly due to its high capacity (1675 mAh g-1) and high specific energy (2600 Wh kg-1). The electrochemical reaction of lithium with sulphur in non-aqueous electrolytes results in the formation of electrolyte soluble intermediate lithium-polysulphides. The dissolved polysulphides shuttle to the anode and get reduced at the anode resulting in Li metal corrosion. The solubility of polysulphide gradually reduces the amount of sulphur in the cathode, thereby limiting the cycle life of Li-S batteries. Several strategies have been proposed to improve the cycling stability of Li-S batteries. A unique approach to eliminate the polysulphide shuttle is to use ultramicroporous carbon (UMC) as a host for sulphur. The pore size of UMC which is below 7 Ã…, is the bottleneck for carbonate solvents to access sulphur/polysulphides confined in the pores, thereby preventing the polysulphide dissolution. This perspective article will emphasise the role of UMC host in directing the lithiation mechanism of sulphur and in inhibiting polysulphide dissolution, including the resulting parasitic reaction on the lithium anode. Further, the challenges that need to be addressed by UMC-S based Li-S batteries, and the strategies to realise high power density, high Coulombic efficiency, and resilient Li-S batteries will be discussed

    Accuracy of triggering receptor expressed on myeloid cells 1 in diagnosis and prognosis of acute myocardial infarction: a prospective cohort study

    Get PDF
    Background Acute myocardial infarction (AMI) is one of the fatal cardiac emergencies. The detection of triggering receptor expressed on myeloid cells 1 (TREM1), a cell surface immunoglobulin that amplifies pro-inflammatory responses, screened by bioinformatics was shown to be significant in diagnosing and predicting the prognosis of AMI. Methods GSE66360, GSE61144 and GSE60993 were downloaded from the Gene Expression Omnibus (GEO) database to explore the differentially expressed genes (DEGs) between AMI and control groups using R software. A total of 147 patients in total were prospectively enrolled from October 2018 to June 2019 and divided into two groups, the normal group (n = 35) and the AMI group (n = 112). Plasma was collected from each patient at admission and all patients received 6-month follow-up care. Results According to bioinformatic analysis, TREM1 was an important DEG in patients with AMI. Compared with the normal group, TREM1 expression was markedly increased in the AMI group (p < 0.001). TREM1 expression was positively correlated with fasting plasma glucose (FPG), glycosylated hemoglobin (HbAC), and the number of lesion vessels, although it had no correlation with Gensini score. TREM1 expression in the triple-vessels group was significantly higher than that of the single-vessel group (p < 0.05). Multiple linear regression showed that UA and HbAC were two factors influencing TREM1 expression. The ROC curve showed that TREM1 had a diagnostic significance in AMI (p < 0.001), especially in AMI patients without diabetes. Cox regression showed increased TREM1 expression was closely associated with 6-month major adverse cardiac events (MACEs) (p < 0.001). Conclusions TREM1 is a potentially significant biomarker for the diagnosis of AMI and may be closely associated with the severity of coronary lesions and diabetes. TREM1 may also be helpful in predicting the 6-month MACEs after AMI

    Advanced Lithium–Sulfur Batteries Enabled by a Bio-Inspired Polysulfide Adsorptive Brush

    Get PDF
    © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Issues with the dissolution and diffusion of polysulfides in liquid organic electrolytes hinder the advance of lithium–sulfur batteries for next-generation energy storage. To trap and re-utilize the polysulfides without hampering lithium ion conductivity, a bio-inspired, brush-like interlayer consisting of zinc oxide (ZnO) nanowires and interconnected conductive frameworks is proposed. The chemical effect of ZnO on capturing polysulfides has been conceptually confirmed, initially by using a commercially available macroporous nickel foam as a conductive backbone, which is then replaced by a free-standing, ultra-light micro/mesoporous carbon (C) nanofiber mat for practical application. Having a high sulfur loading of 3 mg cm −2 , the sulfur/multi-walled carbon nanotube composite cathode with a ZnO/C interlayer exhibits a reversible capacity of 776 mA h g −1 after 200 cycles at 1C with only 0.05% average capacity loss per cycle. A good cycle performance at a high rate can be mainly attributed to the strong chemical bonding between ZnO and polysulfides, fast electron transfer, and an optimized ion diffusion path arising from a well-organized nanoarchitecture. These results herald a new approach to advanced lithium–sulfur batteries using brush-like chemi-functional interlayers.T.Z. acknowledges the support of a Krishnan-Ang studentship from Trinity College, Cambridge. X.P., G.D., and C.D. acknowledge funding from ERC under Grant No. 259619 PHOTO EM. C.D. acknowledges financial support from the EU under Grant No. 312483 ESTEEM2. This work was also supported by the National Science Foundation of China (Grant No. 21373028), Major achievements Transformation Project for Central University in Beijing, and Beijing Science and Technology Project (Grant No. D151100003015001)

    Solar Ring Mission: Building a Panorama of the Sun and Inner-heliosphere

    Full text link
    Solar Ring (SOR) is a proposed space science mission to monitor and study the Sun and inner heliosphere from a full 360{\deg} perspective in the ecliptic plane. It will deploy three 120{\deg}-separated spacecraft on the 1-AU orbit. The first spacecraft, S1, locates 30{\deg} upstream of the Earth, the second, S2, 90{\deg} downstream, and the third, S3, completes the configuration. This design with necessary science instruments, e.g., the Doppler-velocity and vector magnetic field imager, wide-angle coronagraph, and in-situ instruments, will allow us to establish many unprecedented capabilities: (1) provide simultaneous Doppler-velocity observations of the whole solar surface to understand the deep interior, (2) provide vector magnetograms of the whole photosphere - the inner boundary of the solar atmosphere and heliosphere, (3) provide the information of the whole lifetime evolution of solar featured structures, and (4) provide the whole view of solar transients and space weather in the inner heliosphere. With these capabilities, Solar Ring mission aims to address outstanding questions about the origin of solar cycle, the origin of solar eruptions and the origin of extreme space weather events. The successful accomplishment of the mission will construct a panorama of the Sun and inner-heliosphere, and therefore advance our understanding of the star and the space environment that holds our life.Comment: 41 pages, 6 figures, 1 table, to be published in Advances in Space Researc

    Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.

    Get PDF
    Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage
    • …
    corecore